Coздaть aкaунт
KEYSHUB » Русский раздел » СОЧ 3 четверть Алгебра и начала анализа 10 класс (ОГН)

СОЧ 3 четверть Алгебра и начала анализа 10 класс (ОГН)

24 фев 2024, 22:42
Русский раздел / СОР СОЧ / 10 класс
115
0

Задания суммативного оценивания за 3 четверть

«Алгебра и начала анализа» 10 класс ОГН

Суммативное оценивание нацелено на выявление уровня знаний, умений и навыков, приобретенных обучающимися в течение четверти.
Суммативное оценивание проверяет достижение ожидаемых результатов и запланированных на четверть в учебных планах целей обучения.

Учебная программа для 10-11 классов уровня общего среднего образования естественно математического направления в рамках обновления содержания среднего образования.

Типы заданий:
КО – задания, требующие краткого ответа;
РО – задания, требующие развернутого ответа.
Структура суммативного оценивания
Данный вариант состоит из 7 заданий, включающих вопросы с кратким и развернутым ответами.
В вопросах, требующих краткого ответа, обучающийся записывает ответ в виде численного значения, слова или короткого предложения.
В вопросах, требующих развернутого ответа, обучающийся должен показать всю последовательность действий в решении заданий для получения максимального балла.
Оценивается способность обучающегося выбирать и применять математические приемы в ряде математических контекстов. Задание может содержать несколько структурных частей/вопросов.

СОЧ 3 четверть Алгебра и начала анализа 10 класс (ОГН)

Образец заданий и схема выставления баллов
Задания суммативного оценивания за 3 четверть
1. Определите значение предела функции, график которой изображен на рисунке:
а)


lim ( )
1
f x
x
b)


lim f (x)
x
[2]
2. Дана функция
2
3 3
2

 

x
x x
y . Найдите:
a) производную функции;
[2]
b) критические точки функции;
[2]
c) промежутки возрастания и убывания функции.
[2]
3. Закон движения точки по прямой задается формулой
S(t) 3t 5t
3
 
, где t – время
(в секундах), S – путь (в метрах). Вычислите мгновенную скорость точки в момент
t  2
с.
[2]
4.
a) Найдите производную функции
3 2
y  2x  3x 1 .
[2]
b) Запишите уравнение касательной к графику функции
3 2
y  2x  3x 1
в точке (0;1).
[3]
5. Прямоугольный участок площадью 3600
2
м
огораживают забором. Каковы должны быть
размеры участка, чтобы на забор ушло наименьшее количество материала? Решите задачу с
помощью производной.



Cкaчaть документ
Полная версия документа доступен в скаченом файле

Koммeнтapии
Mинимaльнaя длинa кoммeнтapия - 50 знaкoв. кoммeнтapии мoдepиpуютcя

Педагогическая платформа для учителей

  • Дeлиcь в coциaльныx ceтяx КТП СОР СОЧ

Идeaльнoe peшeниe для пeдaгoгoв, кoтopыe готово пoвыcить cвoю кoмпeтeнции в oблacти пeдaгoгичecкoгo мacтepcтвa. Мы предоставляем доступ к разнообразным образовательным материалам, включая КТП (календарные планы), СОР (суммативное оценивание за раздел), СОЧ (суммативное оценивание за четверть), тематическое планирование учебного материала на год, поурочным планам КСП, а также суммативную оценку по разделам и четвертям. Все эти ресурсы помогут вам повысить эффективность вашей работы и улучшить качество обучения ваших учеников.